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Abstract: To explain economic growth, economists typically resort
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"Complexity is not a theory but a movement in the sciences that studies how the
interacting elements in a system create overall patterns, and how these overall patterns
in turn cause the interacting elements to change or adapt. It might study how individual
cars together act to form patterns in traffic, and how these patterns in turn cause the
cars to alter their position. Complexity is about formation -- formation of structures -
- and how this formation affects the objects causing it. (...) This is often a difficult
question; we are asking how a process is created from the purposed actions of multiple
agents.”

W.B. Arthur, 2015, p. 3.
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1. Introduction

The definition of complexity in the above opening citation is comprehensive
enough to cover most of the collective entities and collective enterprises
that one finds in nature and society. Any setting involving relatively small
particles that freely interact in a decentralized way (i.e., without the need
for any central coordination), and whose interaction generates a unique
aggregate outcome or unique aggregate pattern, might fit in such definition.

There is, though, an important distinguishing feature between complex
natural or engineering systems and socio-economic systems, as the one to
be addressed in this article. Differently from the former, the latter might
be interpreted as containing a second layer of complexity, because the
particles underlying the behavior of the system are not, in this case, innate
objects, relatively elementary living organisms, or automata. As pointed
out by Hommes (2021), they are people, who are endowed with the ability
to reason, to plan for the future, and to establish elaborate forms of
communication and interaction.

The degree of complexity and sophistication one should take into
account to approach human choices and human interaction is, nevertheless,
an unresolved and controversial theme in Economics. Most of the economic
theory, built upon the auspices of orthodox neoclassical thinking, evolved
under the premise of hyper-rationality, a premise that neglects most of the
elements typically associated with a complex system (heterogeneity,
interaction, learning, path-dependence, out-of-equilibrium dynamics, and
emergence).

To a large extent, a significant part of the scientific breakthroughs in
Economics over the last decades are grounded on the notion of optimal
rational behavior, a convenient paradoxical assumption that imposes a
pronounced contrast between the alleged inexorable capabilities of the
human mind (interpreted as a flawless machine) and the simplicity and
straightforwardness of the aggregate outcome they typically promote.

Notwithstanding, despite the conceptual usefulness and analytical
practicability enclosed in the optimal rationality paradigm, one must
recognize that decisions made by flesh-and-bone economic agents are
complex, multifaceted, and constrained at many levels. Recent literature
in Economics, which advocates the transition from the neoclassical thinking
paradigm to the Economics of complexity (Delli Gatti et al., 2010; Holt et
al., 2011; Stiglitz and Gallegati, 2011; Bezemer, 2012; Fagiolo and Roventini,
2017), highlights precisely this point: the volume of information and
attentiveness required to approach particular choices and particular
interaction processes is so overwhelming that it is not reasonable to admit
that agents are capable of pursuing optimal courses of action. Hence, hyper-
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rationality is not a viable and credible simplifying assumption; one can, at
most, assume some mild form of rational thinking, which is limited and
constrained both in time and in space.

Economists have always been aware of the cognitive and
environmental constraints affecting deliberative processes. Despite this,
in fact, they have chosen, for many decades, to stick with the rationality
paradigm. Although failing to reflect, in many circumstances, the actual
behavior of economic agents, supporters of the mainstream view advocate
that it leads to rigorous science, namely by avoiding the so-called wilderness
of bounded rationality that underlies the complexity view and which leaves
to the modeler too many degrees of freedom in setting the foundational
principles required for the analysis of economic phenomena (Sims, 1980;
Hommes, 2006, Lengnick, 2013).

Nevertheless, rigorous science that explains no actual real-world facts
and events is of little practical use. This is why the complexity approach is
gaining influence and researchers are progressively starting to consider,
in their frameworks of analysis, a series of less conventional elements, from
multi-dimensional agent heterogeneity (Kirman, 2006; Chen, 2012) to
decentralized network-based interaction rules (Birke, 2009; Bargigli and
Tedeschi, 2014; Bramoullé et al., 2014), and also a wide variety of learning
mechanisms (Athey, 2018; Mosavi et al., 2020; Babenko et al., 2021).

In this study, the standard economic growth model, one of the models
that best symbolizes the orthodoxy of economic thought (Solow, 1956; Cass,
1965; Koopmans, 1965; Lucas, 1988; Romer, 1990), is adapted to a complexity
scenario, through the introduction of a few non-conventional assumptions.
Specifically, the growth problem is converted into a learning-based multi-
agent system, where aggregate results are not the outcome of the optimal
decisions of a rational representative agent, emerging instead from a process
of systematic interaction and mutual learning across a potentially large
population of agents.

A learning-based multi-agent system is defined, in the scientific
literature, as a complex modelling structure or modelling device within
which a possibly large number of independent and autonomous agents
interact in a decentralized fashion, i.e., without the need for any central
planner to intervene and coordinate actions (Khalil et al., 2015;
Anandakumar and Arulmurugan, 2019). The contact established among
agents in this decentralized setup leads to the emergence of an aggregate
outcome that might or might not coincide with a given social goal (e.g., the
maximization of a social welfare measure).

Typically, in the learning-based multi-agent system, individual
decision-makers share a common environment, which is dynamic in the
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sense that it is reshaped whenever agents modify their actions. The behavior
of the agents, in turn, is an adaptive behavior: it evolves through the
exploration of the environment, the observation of the actions of others
and, ultimately, the incorporation of a learning algorithm in their decision
process.

The notion of learning typically associated with this type of system
design is the notion of reinforcement learning. Reinforcement learning is
a process of trial-and-error through which the individual agent gradually
discovers, within a dynamic environment, which is the best course of action
to take. This process of discovery is associated with the observation and
mimetization of the behavior of others, i.e., with a mechanism of learning
(Kaelbling et al., 1996; Szepesvari, 2010; Wiering and Otterlo, 2012; Sutton
and Barto, 2018).

Although learning-based multi-agent systems might be thought and
conceived especially in the context of purely computational or engineering
problems (Borah and Talukdar, 2019; Hou et al., 2021), it should be evident
how they associate well with social contexts, and particularly with economic
settings. As emphasized by Wolpert et al. (1999) and Ellowitz (2008), an
economy is nothing more than a system populated by intelligent agents
who interact with one another and, most importantly, learn with one
another.

To adapt the standard growth framework to a learning-based multi-
agent environment, the following non-standard assumptions will be taken
into consideration:

i) The representative agent of the standard growth model is replaced
by a group of individual decision-makers, each one solving her own
consumption utility maximization problem and each one taking her
own savings decisions;

ii) Individual agents are unable to make long-term plans. Instead, they
solve a sequence of short-run decision problems. In other words,
agents are short-sighted, systematically re-evaluate their
circumstances, and eventually revise plans;

iii) At the beginning of each planning date, the agent has to make a
decision about how much to save from the current planning period
to the next one. The decision on the amount of savings at the terminal
date is made by comparing the agent's own utility with the level of
utility obtained by the other agents. The individual learns by
observing the performance of others and the way in which they
choose and behave, adapting her behavior accordingly;

iv) The individual agent is unable to observe with certainty the savings
rates of other agents, namely those performing better in what
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concerns utility outcomes. Therefore, although the agent may
desire to approximate her own savings rate to the ones of the
individuals obtaining the highest levels of utility, such
approximation might fail due to incomplete knowledge or
incomplete information.

The growth problem, reshaped to include the above assumptions, is
formulated in simple terms, taking into consideration a constant marginal
returns AK production function (Rebelo, 1991). Therefore, the model can
be classified as an endogenous growth model, a class of growth models
thoroughly discussed in the growth literature and presented in detail in
most of the textbooks in the field (Barro and Sala-i-Martin, 2004; Acemoglu,
2009; Alogoskoulfis, 2019; Romer, 2021).

The simple decision problem of the individual agent turns, under the
learning-based multi-agent system interpretation, into a complex problem
for the whole economy, because of the interaction and learning processes
that emerge. Again, this is an approach that goes in the direction of a
complexity view of the economy (simple agents acting and interacting in a
sophisticated environment) and away from the orthodox neoclassical view
(hyper-rational agents acting in a plain and easy to process world).

The remainder of the paper is organized as follows. Section 2 revisits
the standard AK endogenous growth model and characterizes its main
features. Section 3 presents the solution of the model for each planning
period and introduces the end-of-period savings rate as the element of
heterogeneity that allows to distinguish agents from one another. In section
4, the sequence of periods is linked to one another by establishing a
connection between inter-period savings and the initial stock of capital at
each period, and by presenting the rule through which learning takes place.
Section 5 proceeds with the simulation of the model, allowing to observe
how the introduced changes imply the emergence of endogenous
fluctuations for aggregate variables that did not exist in the original setting.
Section 6 discusses a couple of additional new features that might be
integrated into the model. Section 7 concludes.

2. The Utility Maximization Problem of the Individual Agent

Conceive an economy populated by a finite number of decision-makers
indexed by j. Each of these decision-makers solves a standard optimal
control problem, in which utility maximization is subject to a dynamic
capital accumulation constraint. Every agent faces an identical problem,
except for a single source of heterogeneity, to be characterized further below,
which is associated with the savings decisions that, periodically, agents
will have to take.
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The formulation of the decision problem is standard in growth theory
and follows the typical textbook presentation (e.g, Alogoskoufis, 2019; or
Romer, 2021). The endogenous variables of the model are the stock of capital
per efficiency unit of labor, k, (£) 2 0, and consumption per efficiency unit
oflabor, ¢; (t) 2 0. Income is generated through a constant marginal returns
productlon function, y, (f) = Ak, (), with A > 0 a productivity index.
Population and labor efficiency both grow at constant rates, respectively
n>0and g > 0. Capital depreciates linearly, at rate & € (0,1). Therefore, the
capital accumulation equation, which corresponds to the constraint of the
maximization problem, will take the form of the following ordinary
differential equation,

fcj(t) = Ak;(t) — cj(t) — (n+ g + 8)k;(t), k;(0)given (1)

The objective of the agent consists in maximizing the flow of utility
levels from the initial date of the planning problem, ¢ =0, to some future
horizon t=T. In standard growth models, T tends to infinity; in the model
to explore in this study, although the agent is confronted with an infinite
horizon, it is assumed that the decision-maker is boundedly rational and
short-sighted, thus splitting the whole planning problem in a sequence of
short planning problems of length 1. The intertemporal utility expression
is as follows (with p > 0 the agent's rate of time preference),

G(¢)
U;j(0) = fo L G )]L (t)dt 2)

In equation (2), agent j is interpreted as a household of dimension L,
(t)>0. Hence, the utility of the agent corresponds to per capita consumptlon
utility multiplied by the respective dimension (in this problem, C, (¢) is the
overall consumption of the household). Each household grows at the
population growth rate n. Recovering the above-mentioned rate of growth
of labor efficiency, expression (2) is equivalent to:

U;(0) = fTe'(p‘”)tu[egtcj(t)]dt (3)
0

To display equation (3), the initial levels of population (household
dimension) and labor efficiency were normalized to 1, in order to simplify
notation. The instantaneous utility function in (3) is defined as a standard
constant elasticity of intertemporal substitution (CEIS) utility function of
the form,

[e ¢ (t)] (4)

u[egtc ®]= o
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In equation (4), 6 € (0, + )\ {1} expresses the degree of concavity of
the utility function (it is the inverse of the elasticity of intertemporal
substitution). Parameter Cis a positive parameter that can be calibrated to
assure that the obtained values of utility are kept above zero, for certain
combinations of parameter values. Rewriting (3) given (4),

T C,(t)1—9 C T
. = ~[p-n-(1-6)glt J _ —(p-n)t
U;(0) fo e T & 1_9f0 e dt (5)

Condition p —n — (1 — 0)g > 0 must be met in order to guarantee that
intertemporal utility converges to a finite value.

As it is well known in growth literature, the maximization of
consumption utility, as displayed in expression (5), subject to capital
accumulation constraint (1), allows to derive an optimal consumption
trajectory that corresponds to a constant growth rate for this variable. In
particular, the optimal result is such that:

1
¢t = g [A—(p+6g+ )l (6)

When the agent hypothetically solves the infinite horizon problem,
growth rates of capital and consumption will coincide in the long-term
balanced growth path (BGP), and will be equal to:

1
y=5[A—(p+6’g+5)] (7)

If both endogenous variables grow, in the BGP, at the same rate, then
the ratio between the two variables must be constant. Proceeding with the
computation, the consumption-capital ratio in the BGP, defined by ), will
be the following constant value,

_9—1A 5 1 8
lIJ—T( - )+5P—n (8)

Expressions (7) and (8) allow for a considerable simplification on the
presentation of the two key dynamic equations of the model, i.e., equations
(1) and (6). These are presentable as:

ki) = (W + k() — ¢;(©) ©)

¢(t) = ye(®) (10)
It is system (9)-(10) that will be approached in the next section, for an

agent that has a short-term horizon, i.e., that solves the optimization
problem one period of length 1 at a time.
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3. The Solution of the One-Period Problem and the Savings
Transversality Condition

Equations (9) and (10) are linear ordinary differential equations for which
it is straightforward to derive explicit expressions for their two variables,
capital and consumption, as functions of time. The result of solving the
system is:

t
ki(t) = etk (0) + % (1-e¥")c(0) (11)

¢i(t) = e"*¢;(0) (12)

The relation between the initial levels of capital and consumption is
relevant to proceed with the analysis, and this relation can only be derived
by looking at the system's solution at the selected terminal date. At this
stage of the analysis, one considers that the agent can only solve a problem
of length 1 at a time, and therefore a transversality condition for ¢ =1 must
be established. It is assumed that, at such date, the decision-maker selects
some savings rate s, (1) € (0,1). As it will be clarified later, the choice of the
savings rate by the individual agent will be made through a learning
process, by observing the gains that individuals eventually choosing
different savings rates achieve regarding utility levels.

By selecting savings rate s, (1), agent j is faced with the transversality
condition ¢ (1)= [1—5]. (D] y; (1), which is equivalent to ¢ (1)= [1—5]. (1)]Akj
(1). Observing that expressions (11) and (12) correspond, for t =1, to

14
k(1) = e¥*7i;(0) + % (1-e%)g;(0) (13)
¢j(1) = e¥¢;(0) (14)
one can apply the transversality condition to these expressions and obtain:
eV
e¥ci(0) = [1 -5 (1)]A {ell’“’kj(O) + J (1- ed’)cj(O)} (15)
Rearranging,

v,[)ew[l — sj(l)]
—s—(e¥ - 1Ds;(1)

¢i(0) = T k;(0) (16)

In equation (16), s=1—1/A, is the BGP savings rate, which is common
across agents. The replacement of (16) in (11) and (12), makes it possible to
present both variables with reference to the initial level of capital. Observe
that consumption grows at a constant rate, while capital depends on time
on a more sophisticated way.
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$a-8) _ g [e¥(-0 _1]5.(1

ky(©) == ev — z — ng — 1)5;‘(1];]( )e(¢+Y)th'(0) (17)
Pe¥[1—s;(1)

90 = —[(ew - 1)1,(1) "y () (18)

Concerning utility, the substitution of consumption in equation (18)
into expression (5) yields (observe that the discount factor is rewritten given
the definitions of V) and y):

-6
pel[i-s;,0] . !
' R GETON kf(o)]
U.(0) = ~[p+a-o)yle L2775 J dt
,(0) fo e o
c rt (19)
__ | emo-megy
1-6J,
which is equivalent to:
. 1-6
[t k)]
e¥-s—(e¥-1)s;(1) J

Yty — —— —(p—m)t
-0 fo e ¥idt = 9_[, e dt

Solving the integrals,

1-6

PYe¥[1-s;(1)]
U;(0) = e¥—s—(e¥-1)s;(1) kJ(O)] e¥ -1 _ C eP™—1 (20)
AN 1-6 Ye¥ 1-6(p—n)er™

Expression (20) represents the present-value of utility, at the initial
date, for a given period of length 1 in which the agent solves the
optimization problem. Observe that this utility value is explicitly presented
as a function of the various parameters of the model, and without any
dependence relatively to variable time. In possession of the values for every
parameter of the model, it is possible to explicitly quantify utility.

Observe, as well, that the only potential sources of heterogeneity in
the values of utility across individual agents are the end-of-period selected
savings rate and the initial level of capital. In the next section, with the
discussion about sequential planning problems, it will become evident that
the values of 5, (1) and k; (0) are intertwined: the more the agent saves at the
end of one period, the larger will be the stock of capital available to the
agent at the beginning of the following period.

To illustrate the relation between values s; (1) and u, (0), for a given
planning horizon, consider a numerical example. Let A =0.2; p=0.04; g =
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0.05;86=0.025; n=0.02; 6 =1.5; kj (0)=1; C =5. With this array of parameter
values, condition p —n — (1-0)g=0.045> 0 is satisfied, and the consumption-
capital ratio and the BGP savings rate amount, respectively, to: 1 = 0.065
and s =0.675. The BGP growth rate is: y = 0.04.

Under the selected values, equation (20) is equivalent to the following
nonlinear relation between the terminal savings rate and period utility:

03922 — 0.0672s;(1)
1-s;(1) (21)

U;(0) = 9.9007 — 7.3523J

Fig. 1 displays the dependence of U, (0) on s, (1). The relation is of
opposite sign, meaning that lower savings at the end of the period will
imply higher utility over the planning horizon. This is an intuitive result,
because saving less at the terminal date frees resources to consume more
over the time period under consideration. However, this is also a result
with a twist: by saving more at the current period, the initial capital in the
following period will be higher, contributing to additional production of
wealth, consumption and, ultimately, utility; as one regards by observing
expression (20), the level of k; (0) is decisive for determining U, (0). This
point will be further discussed in the following section.

U

6

— ]
4 =

2 [~

-6

) \

-10

Figure 1: Relation between end of period savings and period utility

4. Multiple Planning Periods and the Choice of the End-of-Period
Savings Rate

As in conventional growth models, the devised structure of analysis
assumes that agents face an infinite horizon. Unlike conventional growth
models, though, it is considered that decision-makers are uncapable of
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solving the optimal control problem at once and, thus, they splitit in smaller
problems of length 1. The endeavor of the agents that populate the economy
will then be to repeatedly solve a series of endogenous growth problems
with a similar structure.

However, besides solving the never-ending sequence of optimality
problems, the individual agent has one more task to perform: she will have
to choose, at the end of every time period, how much to save for the
following period, in order to set the most convenient initial level of capital
which, in turn, will lead to the best performance possible concerning the
period utility level to achieve. The savings rate at the terminal dates will
be the source of heterogeneity among agents, because agents potentially
choose different end-of-period savings. This section explains how this
savings choice is performed.

Let k, (t, 7) be the stock of capital of agent j at date  for the problem
1=1,2,... solved by the agent; t represents each of the sequential periods
for which agent j solves a maximization utility problem. Savings at the end
of period 7, for agent j, are defined as ; (1,7) Y (1, t), which is equivalent to
As; (1, 1) k; (1, 7). The fundamental assumption about savings is that the
savings rate at the terminal date will determine available capital at the
beginning of the new period. Analytically,

ki(0,7+1) = k(1,0 +5;(1,Dy;(1L,0) = k1, D[1 + 4s;(1,7)]  (22)

Equation (22) indicates that the amount of capital available for the agent
at the beginning of planning period t + 1 is the amount of capital with
which the agent ends the previous period plus savings at the end of such
period, given the selected terminal savings rate.

Therefore, one finds two countervailing forces in the decision problem
of the agent, given her ultimate goal, which is to maximize utility for the
period under consideration. On one hand, to achieve high utility levels,
the agent must consume more and, thus, save less. However, higher savings
will lead to increased levels of capital which allow to generate additional
income and, hence, free resources for consumption, leading to higher utility.
There is, in this case, a conflict between the short-run and the long-run.
Because the agent solves a sequence of short-term problems, one might
jump to the conclusion that the agent will privilege current consumption
over savings. However, the agent will compare the performance of the
various decision-makers and eventually conclude that those who saved
more in the past are obtaining better utility outcomes today. Since each
agent learns with the behavior of others, and by observing the performance
of others, agents may eventually adjust their behavior in the direction of
increased savings.



392 Asian Journal of Economics and Finance. 2022, 4, 4

In certain conditions, namely those associated with the learning
mechanism that is characterized below, the tendency for a corner solution
(i.e., the tendency for a progressive increase in savings over time or, the
opposite, a progressive concentration in the short-run goal of increasing
consumption at the expenses of savings) might not prevail. Instead,
endogenous fluctuations eventually emerge. Endogenous fluctuations will
signify that, by observing the behavior of others, the individual agent will
at some periods of time prefer to raise savings, while in other periods the
best option to maximize utility is to lower savings. On the aggregate, if
agents choose boundedly unstable trajectories for savings, the economy
will exhibit business fluctuations that accompany the process of long-term
growth.

Once a planning period is over, the agent has the possibility of
observing the utility accomplished by all the other players. As a result, the
agent will adapt her behavior, trying to place her savings rate closer to the
one of the best performing agent. The eventual obstacle faced by the agent
is the possible inability or incapability to fully observe or understand how
much other agents are saving. The individual agent will make her best
guess about the savings rate chosen by the other agents, but this estimation
is not exempt of error. Savings rates are observed with noise, and the agent
may fail in accurately predicting their true values.

Given the above reasoning, the decision-maker will adopt the following
leaning rule for establishing her own terminal savings rate in the period
that follows:

si(Lt+1) =511+ 1 - sm(L,1) + 5] (23)

In equation (23), € € (0,1) represents the measure of the adjustment; s
(1, ) is the end-of-period savings rate of the agent with the highest utility;
and ¢ ~iid(0, o) is a noise variable with zero mean and standard-deviation
equal to ?.

The equation indicates that the end-of-period savings rate at period
T+ 1 is approximated to the end-of-period savings rate (observed with
noise) of the best performing agent, at 1. Parameter { measures how fast is
the agent willing to abandon her original choice in favor of the choice of
others; it translates, in a sense, how fast the agent is willing to learn (the
lower the value of the parameter, the higher is the willingness to learn).
Note that if the maximum utility is achieved by the agent taking the
decision, then no uncertainty is involved, and the agent keeps her previous
decision: s, (1, t+1) =5, (1, 7).

At this stage, all the ingredients of the model are duly formalized and
might be put together to discuss growth in the context of a learning-based
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multi-agent system. This is done in the next section, via simulation of the
model. Recapping, the analysis so far has achieved the following;:
i) The short-run planning problem of an individual decision-maker
has been presented and solved;

ii) The intertemporal utility expression for the individual decision-
maker has been derived;

iii) The source of heterogeneity in the model has been highlighted. This
is attached to the savings rate that the agents select at the terminal
date;

iv) It has been emphasized that the end-of-period savings rate is chosen
with the objective of approaching maximum utility in the period;

v) It has been noted that the savings rate at the end date in one period
will determine the initial stock of capital in the following period;

vi) It has been underlined that the savings rate of the individual is
chosen through a learning process: she compares her own savings
rate with the one of the agent with the highest utility (this savings
rate is observed with noise), and approaches the second at a given
rate.

The next section will evaluate the dynamics of the formalized growth
model, by taking a prototypical numerical example and, from the example,
by simulating some of the relevant trajectories for the individual agents
and for the economy as a whole. The outcome will be a result of systematic
fluctuations, implying that no convergence to a BGP will ever take place.

5. Simulation of the Multi-Period Growth Model

In the simulation of the model to undertake in this section, the focus will
be placed on the graphical representation of time trajectories for the
following variables:
i) Individual utility per planning period;
ii) End-of-period savings rates selected by individual agents, after
learning;

iii) Aggregate income growth, at the end of planning dates;

iv) Growth of aggregate consumption and aggregate investment, at the
end of planning dates.

The parameter values to use in the simulation are those already
proposed in section 3. To these, it is added the value { = 0.75. In order to
keep the graphical analysis tractable, only three agents (or three identical
groups of agents) are assumed, although many more could be considered
under the framework explored in the previous sections.
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Individual agents start by choosing relatively close but distinct terminal
savings rates for the first planning period: s, (1,1) = 0.25, s, (1,1) = 0.3, S,
(1,1)=1/3. Given parameter values, the expressions for the several variables
involved (e.g., capital, income, consumption, and utility), and the adopted
rules of motion (namely for the evolution of the savings rate), it is possible
to present time trajectories for the relevant variables of the model. In the
representation of these trajectories, one hundred points in time are
considered (which, in this case, have correspondence in one hundred
planning periods for each individual).

Let us begin by addressing utility. To turn results comparable, the utility
obtained by each agent at each period, U, (0, 1), is divided by the average
value of the utilities of the three agents. Hence, in this setting, utility
measures with a value above 1 are utility levels above the average and
those below 1 are utility levels below the average. The first graphic (Fig. 2)
is drawn for the case of certainty, i.e., when there is no noise associated
with the perception of the savings rate of the player with the highest utility.

In the case of complete knowledge and no uncertainty, the highest
utility begins, in the first time steps, by being the one associated with the
agent that saves less. However, after a few periods, given the accumulation
of capital that savings provokes, this resultis modified in favor of the agent
that saves more. Note that the utility levels converge over time; this occurs
because, under the learning mechanism that is considered, end-of-period
savings rates converge, as well, to a unique value, what is represented in
Fig.3. As this figure reveals, the convergence process is relatively fast.
Although in a first phase (until period 4) the convergence goes in the
direction of the lower savings, the movement is rapidly inverted and
stabilizes at an intermediate value of s, (1).
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Figure 3: Convergence in end-of-period savings rates under perfect knowledge

The results displayed in Figs. 2 and 3 radically change when
introducing noise in the perception of the savings rates selected by other
agents. Let ?=0.05 be the standard-deviation associated with the noise term.
In this case, results will change every time the model is run, but there is a
pattern: there is not an unequivocal prevalent utility result, i.e., different
agents have the best utility outcome at different time periods each time
the model is run. Associated with this outcome, there is also a bounded
instability process attached to the way in which each the savings rate
evolves over time. Fig. 4 and Fig. 5 display three possible examples of the
trajectories followed by the utility of each agent and by each agent's end-
of-period savings rate.
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Figure 5: Time trajectories of savings rates with noise

Observe, from the figures, that for the agent with the highest utility
over some length of time, the corresponding trajectory of the terminal
savings rate is linear. This occurs because the agent with the highest utility
does not have an incentive to change the savings rate and therefore faces
no uncertainty: she just keeps selecting the same rate as before. When the
utility level of the individual agent is hypothetically overtaken by the utility
level of another agent, the first individual abandons her savings rate and
tries to guess what the savings rate of the other agent is (what is done with
error, thusjustifying the oscillating irregular path followed by the savings
trajectories, as displayed in Fig. 5).
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Because individual results, contingent on the interaction among agents
in a scenario of imperfect information, lead to bounded instability and
irregular fluctuations at the individual (micro) level, one should expect
these fluctuations to be passed on to the aggregate (macro) level. The figures
to be presented below confirm this supposition. Particularly relevant is
the result that the growth model involving the subtleties of learning and
interaction is capable of explaining not only long-term growth but also of
addressing potential sources of business cycles in the economy. In this case,
aggregate fluctuations have, as candidate underlying forces, a mix of
elements including decentralized interaction, learning and imperfect
information.

Let us return to the case of no noise, for a first approach to the outcomes
of the aggregate economy. Define aggregate income, aggregate
consumption, and aggregate investment, at the end of each planning date,
in the following terms:

3 3

3
YLD =Y 3A0; CLD = Y 6UL0; 14,9 = )[40 - 610)] o)
j=1 j=1

j=1

The evolution of the growth rates of these three variables, with perfect
knowledge and the absence of noise, is represented in Fig. 6. It is evident
that, after a brief transient phase, the growth rates converge to a same
positive value. Because the equilibrium growth rate is positive and derived
within the model, this has the nature of an endogenous growth model.
Sustained growth is guaranteed by the fact that in the beginning of each
planning date, capital accumulated from the previous period plus savings
is reinvested in production.

A possible comparison one might undertake at this point is the
comparison between the infinite horizon problem of the representative
agent in the orthodox formulation of the model and the outcome in Fig.6.
As mentioned in section 3, for the adopted parameter values, the infinite
horizon problem yields a BGP growth rate equal to y = 0.04. In the multi-
agent system, the observation of the figure points to a lower growth rate
for the aggregate economy, y=0.023. This is an expected result: it is certainly
more efficient to solve the infinite-horizon problem at once, instead of
solving it period per period and choosing a savings rate every time the
optimization problem is addressed. The problem is that solving the infinite
horizon problem with no regard for the choices of others involves assuming
anotion of rationality that goes beyond the capabilities of the average agent:
the economy grows less than it could eventually grow because decision-
makers are short-sighted, suffer the influence of others, and have to learn
to eventually arrive to a BGP outcome (i.e., agents are not hyper-rational).
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Figure 6: Growth paths of income, consumption, and investment
under perfect knowledge

Once the assumption of perfect knowledge is relaxed, fluctuations
emerge in the paths of the three variables - income, consumption, and
investment - as Fig. 7 and Fig. 8 allow to verify. In each case, three panels
are drawn, representing three possible realizations of the model. Income
is isolated from the other two variables, to highlight the growth of the
economy, which is represented by the evolution of income. Observe that,
in each of the examples, the growth rate of income fluctuates at values
close to the BGP y = 0.023 but never rests in this value. Fig. 8 reveals the
result that investment is, in every example, more volatile than consumption,
an observation that has empirical support.
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model with noise

To complement the above graphical analysis, Fig. 9 displays the
relation between the average end-of-period savings rate (i.e., the average
between the three individual savings rates) and the growth rate of income.
Again, three panels are represented for three different realizations of the
model in the imperfect knowledge case. As expected, the periods in
which savings are higher are also those in which the economy
grows more (because these are also the periods in which the economy
accumulates capital at a faster pace). In each graphic, a trend line is added
to emphasize the predominance of the characterized result and the found
regularity.
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6. Possible Extensions

The growth model characterized along the previous sections might be
modified and extended in various directions. To exemplify the adaptability
of the theoretical framework, two possible changes to the benchmark
structure are proposed and briefly discussed below.

The first adaptation concerns the nature of the capital stock. Expression
(22) indicates that capital is fully private, i.e., the capital accumulated in
one period and the agent's savings in the same period, fully revert to the
same individual at the beginning of the subsequent period. A redistributive
policy or the public good nature of the capital good may imply that such
assumption eventually does not hold.

If one assumes that part of the capital is private and returns to the
agentin the next period, while the remaining share is equitably distributed
across all agents, then the dynamics observed in the previous section will
certainly suffer a change. Let o € (0,1) be the share of private capital. In
this scenario, the amount of capital available to agent j at the beginning of
period 1+ 1 will no longer be the one presented in equation (22); it will be
the following:

Y _ k(1,01 + As;(1,7)]
J

ki(0,7+ 1) = wk;j(1,0)[1 + 4s;(1, )] + (1 — w)

(25)

In equation (25), the term ¥/_ k;(1,7)[1 + 4s;(1,7)] corresponds to the
stock of capital accumulated in the economy at the end of period t. A fraction
1 - o of this stock is equitably distributed across agents and it will add to
the share of private capital to form the available stock of this input at the
beginning of the new planning period, i.e., t+1.

If a share of the capital is of public use, and therefore can be employed
by every agent in the same amount, regardless of who generated it, this
will introduce a tragedy of the commons type of problem. Agents will
expect others to accumulate capital that can be used by all. Meanwhile, the
same agents reinforce consumption and lower savings to increase period
utility. For a lower than 1 value of o, agents have progressively less incentive
to save, because their accumulated capital will be distributed by the
universe of the agents in the economy. In this case, shares of savings
eventually fall to zero and the only capital available to initiate the next
period is the one that is accumulated from the previous period.

This result is depicted in Fig. 10, where the trajectories of the savings
rates at the terminal date are drawn for the same parameter values used in
previous examples. In this case, it is assumed o = 2/3. Three panels are
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Figure 10: Time trajectories of savings rates with capital as a partial public good
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drawn, representing three possible realizations of the model given the
presence of the noise variable. One observes that if part of the available
capital has a public good nature this will progressively lower end-of-period
savings, leading to a convergence to zero in the long term. Therefore, in
this model agents have no incentive to cooperate and share resources; when
such resources are shared, agents save less, accumulate lower amounts of
capital and, therefore, will consume less in the long-run, with the associated
negative effect over utility.

Another possible extension consists in conceiving that agents are
capable of assessing future outcomes of current decisions and, therefore,
to evaluate utility over long horizons. In this case, agents will compare
utility across periods under the assumption that all players will maintain
their current end-of-period savings rate. The utility levels to compare, for
each agent j, will be, in this case, ¥I_, B7U;(0,7), with B € (0,1) an
intertemporal discount factor. The savings rate will then be chosen through
a rule similar to (23), where the only change consists in the measure of
utility that is subject to evaluation, and that now is not circumscribed to
the current period.

If the discount factor is high enough (i.e., if the future is not too strongly
discounted), this new assumption constitutes a factor of inertia, because
the rank of utilities across agents is less likely to suffer changes.
Consequently, the best ranked player will tend to be perpetuated over time,
and the other agents will adjust their choices in order to meet, in the long-
term, the savings rate of the agent with the best performance in terms of
utility.

7. Conclusion

The models devised by economists to explain economic growth have the
virtue of setting the foundations of such explanation in the behavior of
agents that make choices and plan for the future. These decision-makers
are simultaneously households, who choose the optimal paths for
consumption and savings, and firms, which accumulate capital given some
production technology. If the production technology is such that constant
returns in the accumulation of capital prevail, then a process of sustained
endogenous growth emerges.

The main issue with the mainstream model of growth is that the
behavior of the economic agents is excessively stylized. Relaxing some of
the assumptions that shape such behavior may allow to acquire additional
insights about the process of growth. First, in the mainstream model, agents
decide and act in a fully rational way. This signifies that agents are capable
of formulating and solving intertemporal problems in long horizons (even
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infinite horizons), that they are fully autonomous in the sense that they do
not need to learn from the behavior of others, and that they face no obstacle
in collecting and processing information about the future, thus acting under
perfect foresight. The corollary of all the prior observations is that all agents
act alike and, therefore, the intertemporal consumption choice they face
can be reduced to the intertemporal decision problem of a single
representative agent.

The orthodox model of growth is at odds with a complexity view of
the economy, i.e., with a view in which the emergent outcome is the result
of the interaction among a large number of individuals that are
unsophisticated, and thus follow simple rules, and that have to manage
themselves in a complex world that they cannot fully understand or know.
It is with this idea in mind, i.e., that the economy should be perceived and
interpreted as a complex system, that the benchmark economic growth
model is modified in this paper. A few changes are introduced, making the
growth model approach a system that can be classified as a learning-based
multi-agent system.

As the designation indicates, two of the most significant changes to
the model are the introduction of heterogeneity (thus transforming the
economy in a multi-agent system) and the inclusion of a process through
which agents modify their behavior by observing the behavior of others
and, hence, potentially approaching the behavior of those who perform
the best (this is a learning mechanism). Besides these, other changes are
required, specifically the idea that the capacity of individuals to solve
intertemporal plans is limited. Therefore, instead of solving a utility
maximization problem for the whole horizon of life, the agent splits this
problem in a sequence of many problems of equal length. By solving these
smaller scale problems, the individual is capable of adjusting her behavior
in the moment between the ending date of a problem and the beginning
date of the next one. This adjustment takes the form of a choice of how
much to save from one period to the next. Savings have the advantage of
increasing the capital stock, although they have the disadvantage of
provoking a substitution effect thatlowers consumption at the expenses of
savings.

The agent will not be fully informed and, therefore, she will not know
how much to save to attain her utility maximization goal. Hence, she will
compare her utility with the utility of those who adopt different savings
rates, and adjust the respective choice whenever the choices of others perform
better. If there were no informational flaws, and the agents were capable of
exactly observing how much the others save, the dynamics underlying the
model would converge to a BGE, where the main economic aggregates would
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all grow at the same rate, and the savings rate selected by each individual
would rapidly become the same. In this case, the differences relatively to the
benchmark infinite-horizon representative-agent model are not much: the
main result is, in each scenario, the formation of a BGP where the behavior
of every agent is the same and, therefore, there is a coincidence between
individual outcomes and aggregate outcomes.

The previous result is radically modified once one considers that the
learning process is subject to some sort of information or knowledge
imperfection. If the agent is not capable of knowing exactly how much the
agent that performs best in terms of utility saves, the incurred potential
errors might lead to a systematic change in the selected savings rate at the
end of each time period. As a result, capital, consumption and income will
not converge to the BGP, i.e., they will not grow, after the transient phase
has faded out, at a constant rate. The time trajectories of the main aggregate
variables will display endogenous fluctuations under the form of abounded
instability evolution process, in which the corresponding growth rates
oscillate around a constant value but never converge towards it.

The main message is that adapting conventional growth models in
order to interpret them as complex systems, more specifically learning-
based multi-agent systems, is a fundamental step to acquire additional
insights on the growth process. Although the obtained results might not
appear as straightforward as in the infinite-horizon problem, much of the
introduced assumptions add realism to the model: the cognitive limitations
in planning ahead too far in the future, the information processing
limitations associated with knowing how much others save, and the
decision-making limitations, that make agents learn with others instead of
taking decisions on their own, are all elements that place us closer to reality.
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